Theoretical Investigation on Charge Transfer Properties of 1,3,5-Tripyrrolebenzene (TPB) and its Derivatives with Electron-withdrawing Substituents

نویسندگان

  • Yong Hu
  • Jun Yin
  • Kadali Chaitanya
  • Xue-Hai Ju
چکیده

The electronic structures and charge transport properties of 1,3,5-tripyrrolebenzene (TPB) and its substituted derivatives with –F and –CN groups have been investigated by DFT calculations in combination with the Marcus hopping model. The dimer geometry was optimized by density functional theory method with dispersion force correction being included (DFT-D). Consequently, the charge transfer integral was evaluated. The calculation results show that the introduction of electron-withdrawing substituents does not significantly change the bond lengths and molecular symmetry of TPB, but lower the coplanarity between the pyrrole and benzene rings, especially in the case of CN substitution. Meanwhile, the introduction of electron-withdrawing groups can decrease the energy of the frontier molecular orbital and enhance the air stability. Fluorination makes the λe increase obviously while cyanation dose not. Generally speaking, the λe values of the title compounds are larger than their λh. Except for compounds 6 and 9, all others keep the face to face packing or have a slight slip in dimers, but the center of mass distances increase after fluorination or cyanation due to the distortion of the monomer’s coplanarity. The predicted quasi-one-dimensional electron mobility of the dimers is up to 0.433 cm2·V‒1·s‒1 at 298.15 K. The electron injection barriers of 2 and 7 are lower than that of TPB. The TPB derivatives of 1, 2, and 7 are potential n-channel materials with the high electron mobility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical study of the effects of substituent and quadrupole moment on π-π stacking interactions with coronene

Stability of the π-π stacking interactions in the Ben||substituted-coronene and HFBen||substituted-coronene complexes was studied using the computational quantum chemistry methods (where Ben and HFBen are benzene and hexaflourobenzene, || denotes π-π stacking interaction, substituted-coronene is coronene molecule which substituted with four X groups, and X= NH2, CH3, OH, H, F, CF3, CN and NO). ...

متن کامل

Reactivity and aromaticity of hexasiline derivatives Si6XH5 (X = H, F, Cl, Br, COOH, NO2, NH2, CH3 and tBu)

During recent years, the silicon organic-inorganic compounds play the key role in medicinal chemistry and pharmaceutical industry. This is because of their similar chemical properties with carbon compounds. The second reason is related to their easy transfer from the cell membranes. So, molecular simulation and study the properties of novel organosilicon compounds can be more important. From th...

متن کامل

A theoretical study on halogen-π interactions: X-C2-Y…C8H8 complexes

M06-2X functional was employed to study halogen-π interactions in X-C2-Y…C8H8 complexes (X, Y=H, F, Cl, and Br). In fact, interactions of mono- or di-halogenated acetylenes and planar cyclooctatetraene as an anti-aromatic π system were considered. Relationship between binding energies of the complexes and charge transfer effects was investigated. Also, electronic charge density values were calc...

متن کامل

Design of Acceptors with Suitable Frontier Molecular Orbitals to Match Donors via Substitutions on Perylene Diimide for Organic Solar Cells

A series of perylene diimide (PDI) derivatives have been investigated at the CAM-B3LYP/6-31G(d) and the TD-B3LYP/6-31+G(d,p) levels to design solar cell acceptors with high performance in areas such as suitable frontier molecular orbital (FMO) energies to match oligo(thienylenevinylene) derivatives and improved charge transfer properties. The calculated results reveal that the substituents slig...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016